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Shock Compression Techniques 
for Developing Multiphase 

Equations of State

Robert S. Hixson, George T. Gray, and Dennis B. Hayes

An airplane accidentally hits a mountainside, a bird gets sucked into the turbine
blades of a jet engine, a meteorite strikes a satellite or a planet, explosives blast a
cavity in the earth for a building foundation, a hammer strikes metal to forge a

new part, a blast wave from a nuclear explosion strikes objects in its path—in both man-
made and natural settings, shock waves and impacts produce strong

impulsive loading or sudden increases in external stress. In each
case, the scientist or engineer would like to predict the response

of the material to that dynamic loading. How much does the
density increase? Does the material heat up? Does it melt? 



The key to answering some of these
questions lies in knowing those intrin-
sic properties of materials character-
ized by their equations of state. Like
the familiar equation of state (EOS) of
an ideal gas, PV = nRT, the equation
of state of a material specifies a defi-
nite relationship between three ther-
modynamic variables, pressure P,
temperature T, and volume V (or den-
sity ρ = mass/V). Thus, it is not possi-
ble to adjust the three variables
independently. Rather, if the density
and temperature of a material are
fixed, for example, then its pressure
(as well as energy, entropy, and all
other thermodynamic quantities) is a
unique value determined by its EOS.

Los Alamos scientists have a long
tradition of using dynamic loading
techniques to develop the equations of
state that describe solids and liquids at
extremely high temperatures and pres-
sures. During the Manhattan Project,
Hans Bethe, Geoffrey I. Taylor, Cyril
S. Smith, and others developed seminal
theories of material response to shock
wave compression. After World War II,
experimentalists Stanley Minshall,
John M. Walsh, Robert G. McQueen,
and others developed plate impact
techniques to make much more precise
measurements of equations of state.
Weapon designers use those equations
of state, as well as others developed
more recently, to improve the fidelity
of their large-scale computer simula-
tions of nuclear weapon designs. 

Today the goal is to perform high-
fidelity simulations that predict nuclear
weapon performance and safety under
a wide variety of scenarios. To achieve
the required level of confidence,
weapon designers need equations of
state that faithfully account for the
complex behavior of plutonium, urani-
um, and many other metals when they
are dynamically compressed. 

Under dynamic loading, metals can
change not only from solid to liquid
and liquid to vapor but also from one
solid crystal structure to another. Here

we describe how we are using new
shock-compression techniques involv-
ing the preheating of materials to map
out the boundaries between solid–solid
and liquid–solid phases. We also out-
line how we use that information to
construct sophisticated, semiempirical
multiphase equations of state from
which we can predict responses of
materials in complex geometries,
responses that have not been or cannot
be directly measured experimentally.
These equations of state help with our
own interpretation of experiments and
contribute to the development of other,
more comprehensive equations of state
for use in weapon design codes. 

Zirconium Phase Diagram 

To illustrate the development of
an EOS, we will consider our work
on the EOS of zirconium, a heavy
element between titanium and hafni-
um in the group 4B metals. Figure 1,
the phase diagram of zirconium,
shows current best estimates for the
phase boundaries of zirconium in the
pressure–temperature (P–T) plane. At
a constant pressure of 1 atmosphere,
zirconium, which is a hexagonal,
close-packed (hcp) structure at room
temperature, will change to a less-
dense, body-centered-cubic (bcc)
structure when heated above 1136
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Figure 1. Zirconium Phase Diagram
This diagram by Carl Greeff of Los Alamos shows current best estimates for the
phase boundaries of zirconium in the pressure–temperature (P–T) plane. The esti-
mates are based on shock compression work and analyses from the literature.
Boundaries separate the three solid phases—α (hcp), ω (hex), and β (bcc)—and the
liquid phase. Each P–T point along a phase boundary defines a state in which mix-
tures of the two phases can coexist in equilibrium. The locus of P–T states in which
a liquid and a solid phase can coexist is called the coexistence curve, the melt
curve, or the phase boundary. The locus of states in which two solid phases can
coexist is called a coexistence curve or phase boundary. Two coexistence curves
intersect at a “triple point,” and at that temperature and pressure, three phases can
coexist. Also shown is the principal Hugoniot, a locus of end states reached by
shock compression starting from room temperature and pressure.



kelvins. At still higher temperatures,
it melts. Similarly, if the metal is
kept at room temperature, the hcp
phase of zirconium will transform to
a new, higher-density hexagonal
phase when the pressure is increased.
(Note that for some metals, the high-
pressure phase is less dense than the
low-pressure phase.)

Using Shock Waves to
Develop Equations of State

Also shown in Figure 1 is the
“principal” Hugoniot1 for zirconium.
This dashed curve is the locus of end
states that can be reached through
shock wave compression. The
Hugoniot rises steeply in the P–T

plane, whereas an isotherm, a locus
of states reached through static com-
pression (slow increase in pressure)
with temperature held constant, is by
definition, flat in the P–T plane. Both
the Hugoniot and the isotherm are
useful in developing an EOS for a
material, but they must be combined
with other thermodynamic informa-
tion, such as the material’s heat
capacity. In general, phase diagrams
and properties of the pure phases can
be experimentally determined with
either static or dynamic techniques.
Results may differ because of the dif-
ferences in the experimental time
scale. Sometimes, those differences
are explained by time-dependent
equilibration, but other differences
reflect the fact that a material
responds differently to high strain
rates than it does to low strain rates.

For the Hugoniot shown in

Figure 1, the temperatures were not
measured directly but were calculated
from the EOS that we constructed
using the Los Alamos and Russian
data displayed in Figure 2. This rep-
resentation of the shock Hugoniot is a
plot of shock velocity (Us) versus
particle velocity (Up). Each cusp, or
sudden change in slope, signals the
location of a solid–solid phase bound-
ary. The cusp forms because the
shock pressure is sufficient to induce
a phase change, and the resulting
density change causes the shock
velocity to change and the single
shock to split into two shocks, one
following the other. 

Figure 3 describes how we use
time-resolved laser-interferometric
techniques to locate the position of
that cusp, or solid–solid phase
change, in the P–T plane. Work is
under way to use different initial tem-
peratures of the material and thereby
map out all the points on the phase
boundaries in Figure 1. 

The gas gun facility where we per-
form the experiments is shown in
Figure 3(a). The gas gun accelerates
a projectile carrying a thin impactor
toward a flat, very thin zirconium tar-
get held in place by its edges—refer
to Figure 3(b). At the back of the tar-
get is a laser probe connected by
fiber-optic cables to a VISAR2

(velocity interferometer system for any
reflector)—refer to Figure 3(c). By
determining the frequency of the laser
light reflected from the center of the
target’s back surface, the VISAR
determines the velocity history of
that surface after impact. As
explained in Figure 3(d), the velocity
history of the back surface directly
reflects the structure of the shock
waves that have propagated through
the sample and, in turn, the effects of
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Figure 2. The Zirconium Shock Hugoniot 
The shock Hugoniot for zirconium, a plot of shock velocity (Us) vs particle velocity

(Up), was determined from Los Alamos and Russian shock-compression measure-

ments and from calculations (dashed curves) using the multiphase model devel-

oped by Greeff. The cusps in the data indicate that successively higher-impact

stresses bring the metal to final states with different crystalline phases: the α (hcp),

ω (hex), or β (bcc) phase. This shock Hugoniot was used to calculate the P–T

Hugoniot displayed in Figure 1.
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1 This curve is named after the nineteenth
century French scientist.

2 The VISAR was invented around 1970
by Lynn Baker at Sandia National
Laboratories. It is the tool of choice
worldwide for shockwave work.
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(a) Both photo and schematic (inset) show a gas gun facility at
Ancho Canyon, where we perform shock compression experi-
ments. Typically, a projectile is accelerated by compressed gas,
or sometimes by gunpowder, down a long barrel (10 to 40 ft
long) and impacts a stationary target at speeds of 0.1 to 8
km/s. (b) In our equation-of-state experiments, a flat, thin
impactor carried by the projectile strikes a flat, very thin zirco-
nium sample and sends a compression wave through that tar-
get. A laser probe at the back of the target focuses laser light
from one optical fiber onto a spot at the center of the zirco-
nium plate. The light reflected from the moving surface is
focused onto a second optical fiber that leads back to a laser-
velocity interferometer, called a VISAR, located in the recording
room (c). The VISAR determines the reflected light’s frequency
shift as a function of time and thus the velocity history of the
back surface of the zirconium sample. The wafer is so thin and

the aspect ratio so large (say, 40 to 1) that measurements take
less than 2 µs following impact, before any edge effects could
travel to the target center and affect the measurements. This
technique determines the time-resolved velocity history of a
moving surface with the times accurate to ± 1 ns and the
velocities accurate to ± 1%. (d) The shape of the surface veloc-
ity history reflects the propagation of the shock wave through
a multiphase material. Between 0 and 1, an elastic wave
reaches the target’s back surface; between 1 and 2, a plastic
(deforming) wave called P1 increases the pressure to the point
2 where the material begins to change phase. Between 2 and 3,
a second plastic wave (P2) increases the pressure slowly as
more of the material changes phase until the peak load is
reached at 3. Finally, at 4, a trailing release (rarefaction) wave,
initiated by reflection of the shock wave from the impactor’s
back surface, arrives at the target’s back surface.
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Figure 3. VISAR Measurements of Shock Wave Structure



shock compression on the material. In
particular, if shock compression caus-
es the material to change to a denser
phase (for example, to cross the α–ω
boundary or the ω–β boundary in
Figure 1), the shock wave is unstable
and breaks into two shock waves, or
deforming/plastic waves, called P1
and P2. The first deforming wave P1
has a pressure corresponding to the
stress at which the principal Hugoniot

intersects the phase boundary in
Figure 1. It brings the material to
point 2 in Figure 3(d). The second,
slower plastic wave P2 brings the
material to its ultimate loading stress
shown as point 3 in Figure 3(d). The
detailed shape of the transmitted com-
pression wave, therefore, contains
information about the location of one
point on the phase boundary. The
small initial elastic wave (between

point 0 and point 1) complicates
interpretation of this record and is
discussed below.

By changing the initial tempera-
ture of the sample, we can shift the
starting point of the Hugoniot curve
so that it will cross the phase bound-
aries at a different longitudinal stress
in the material and thereby map out
all the points on the phase bound-
aries. Such techniques for preheated
shock compression are currently
being developed at Los Alamos. 

Multiphase Equations 
of State 

Development. After locating the
boundaries between different phases
of a material, we use that informa-
tion to help develop sophisticated,
thermodynamically consistent equa-
tions of state that take into account
some or all the possible structures of
the material. We then use these mul-
tiphase equations of state to do high-
fidelity computer simulations of
experiments that involve dynamic
loading. 

We model the EOS for each pure
phase with, for example, a semiem-
pirical, analytical form for the
Helmholtz free energy (HFE) and
determine the parameters in the
model from shock wave experiments,
isothermal compression data, and any
other available data. To get a thermo-
dynamically complete HFE in the
mixed-phase region, we must also
specify the entropy and energy at one
reference point. We know that two
phases have the same Gibbs free
energy (GFE) along their coexistence
curve. Therefore, by requiring that
the calculated coexistence curves
(that is, the points at which the calcu-
lated GFE for the two phases are
equal) match the measured phase
boundaries, we can determine
uniquely all the pure-phase reference
energies and entropies.
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Figure 4. Measured Wave Profiles at Different Impact Stresses
Under high impact stresses (strong shock compression), the (particle velociy) wave

profiles for high-purity zirconium (red) and low-purity zirconium (green) display fea-

tures labeled 1–4, corresponding to the features described in Figure 3(d). In particu-

lar, the cusp at point 2 indicates the stress (or pressure) at which a solid–solid

phase transformation begins in the material, producing a second plastic wave P2.

Note that low-purity zirconium changes phase at a higher pressure than high-purity

zirconium, and its phase transformation is more sluggish—the pressure rises more

slowly as the phase transformation proceeds between points 2 and 3. The impact

stresses reached in Experiments 33 and 34 (also done on high-purity zirconium)

were lower than the pressures at which phase change begins, so the wave profiles

are smooth, indicating no phase change. These profiles were measured by Paulo

Rigg of Los Alamos.



Application. To implement a com-
putational technique (say, a hydrody-
namic calculation involving shock
loading) that accounts for the behavior
of mixtures of phases, we must make
some additional assumptions. One-
dimensional shock wave experiments
measure longitudinal stress, whereas
the thermodynamic properties depend
upon pressure. For solids, longitudinal
stress and pressure are different. In
most cases, it is satisfactory to treat
strength effects as being elastic/per-
fectly plastic, which is our usual
assumption. We further assume that
crystallites of the individual phases in
a mixture are small enough that pres-
sure and temperature are locally equil-
ibrated, although the mixture need not
otherwise be in thermodynamic equi-
librium. We also assume that the shock
response is rapid enough that all
processes are adiabatic although not
isentropic. Problem closure is
achieved if rules are specified for the
rates of transformation between phas-
es. Because our goal is to interpret
experimental results, we use semiem-
pirical rules. In our most elementary
models, we assume that the transfor-
mation rate between two phases is
proportional to the calculated GFE
difference between the two phases and
inversely proportional to a character-
istic time for that particular transfor-
mation. Our experiments show that
characteristic times for a forward
phase transformation (from a low- to
a high-pressure phase) are not always
the same as those for the reverse
transformation. We have shown this
numerical approach to be quite robust
because it easily handles very com-
plex, nonequilibrium mixtures of
many phases during computations of
wave propagation in a phase-changing
material. 

Systems with complex geometries
often defy direct measurement of the
details of the response to impulsive
loading so that often the only alterna-
tive is to develop computational mod-

els. Many materials in systems of
interest undergo multiple, and some-
times nonequilibrium phase changes,
when they are shocked. The equations
of state and locations of phase bound-
aries of these materials are measured
in simple experiments and the behav-
ior is captured in a multiphase EOS.
Then modeling provides the necessary
bridge between the world of physics
and application.

Transmitted wave profiles that are
measured in these experiments con-
tain much more information on mate-
rial behavior than just wave speeds
and locations of phase boundaries.
Most materials display a variety of
nonequilibrium effects that are promi-
nent in shock and release experiments.
Some phase changes are sluggish, and
this feature is reflected in the rather
broad rise time in Figure 4. (See the
broad rise time between points 2 and
3 compared with the sharp rise time
between points 1 and 2.) The forward
transformation sometimes slows
abruptly after only partial completion,
clearly a nonequilibrium phenomenon,
and this affects the speed of the wave
between points 2 and 3 in Figure 4.
There may be big differences in the
speeds of the forward and reverse
transformations, which will affect
both the peak particle velocity and the
detailed structure of the release wave.
Space limitations do not allow us to
go into these aspects in any detail. But
it is important to recognize that these
experiments provide unique data on
phase change kinetics and nonequilib-
rium effects that are invaluable for
generation or validation of fundamen-
tal theories of the phase change
processes at high strain rates.�
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